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Abstract—High Definition (HD) maps, containing detailed road
information, are essential for autonomous driving and many geo-
related tasks. Recent developments in computer vision make it
possible to automate the labor-intensive HD map maintenance
work, such as localizing traffic signs within a road network.
However, updating traffic signs to HD maps is non-trivial,
as it not only requires precise geo-location but also requires
confirming whether a sign belongs to a specific road. In our
work, we develop an end-to-end automated traffic sign update
system, termed AutoTS, which is capable of using an image
sequence collected during vehicle operation to extract the geo-
location of a traffic sign and determine whether it belongs to the
road driven on, from its orientation. In AutoTS, we design a noise
and sparsity adaptive localization module, which can filter noisy
location points and derive a geo-location from sparse location
points. To identify the orientation of traffic signs, we devise a
position-aware orientation classification module, which uses the
ROI feature and the position-aware SIFT feature to explore the
orientation characteristic and understand the road context. To
facilitate the evaluation of the proposed method, we construct a
traffic sign localization and orientation classification benchmark,
KITTI-TS. Our AutoTS achieves an MAE of 2.38 meters in traffic
sign localization, while the accuracy in orientation classification
reaches 88.89%.

Index Terms—Automated map making, traffic sign localization,
spectral clustering.

I. INTRODUCTION

High Definition (HD) maps, rich in detailed road bound-
aries, lanes, traffic signs, and other semantically meaningful
landmarks, are pivotal in many geo-related scenarios, such as
autonomous driving [1]], [2] and traffic route planning [3]]. The
efficacy of HD maps relies heavily on timely updates, espe-
cially regarding traffic signs (e.g., speed limit signs), which are
crucial for tasks like estimated time of arrival predictions [4],
[5] and traffic condition prediction [[6]. However, in practice,
maintaining HD maps needs professionals to drive automotive
data collection vehicles equipped with high-grade sensors to
gather updated information about traffic signs for all streets,
which is time-consuming and inefficient.

Fortunately, the widespread use of devices that are equipped
with cameras and Global Navigation Satellite Systems (GNSS,
e.g., GPS), along with advances in computer vision, has
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Fig. 1. The automated traffic sign update system extracts the geo-location
and orientation from the detected traffic sign sequence. Detected traffic signs
exhibit varying orientations. The “One Way for Right” sign is of backward
orientation and belongs to the road driven on, while the “No Entry” sign is
of rightward orientation and belongs to the road intersecting with the road
driven on. Our system updates the “One Way for Right” sign to the current
driving road on HD maps.

facilitated more efficient update schemes. In particular, sev-
eral studies [7]-[9] have focused on the task of automated
traffic sign localization by harnessing extensive street images
captured by the vehicle dashboard camera [[10]. Typically, they
extract the locations of traffic signs from multiple street images
and cluster them to determine the precise geo-location, or
apply Structure from Motion (SfM) [11] to extract the location
of a traffic sign from multi-view images. However, in real-
world applications, updating traffic signs to HD maps not only
requires their geo-locations but also their orientations (i.e., the
direction in which the sign is intended to guide vehicles) to
confirm whether the traffic sign belongs to the current road. As
shown in Figure[I] each detected traffic sign exhibits a specific
orientation. Accurate orientation classification helps reduce
map update errors and contributes to improving downstream
geo-related tasks.

Therefore, to achieve comprehensive traffic sign updates,
our work aims to simultaneously estimate the location and
orientation of traffic signs captured in a sequence of street
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(a) Badly placed yield sign

(a) Normally placed yield sign

Fig. 2. Two “Yield” signs have different placements, but both of them belong
to their current driving roads (i.e., backward orientation).

images. However, this task is non-trivial due to the following
challenges. 1) Noisy and Sparse Location Points. To estimate
the location of a traffic sign, we require both the GPS location
of each street image and the depth between the camera and the
traffic sign. However, errors in GPS signals and depth estima-
tion can introduce noisy location points. Additionally, factors
such as limited camera field of view (FOV) and poor lighting
conditions may cause traffic signs to be undetected, resulting
in sparse location data. Therefore, how to derive accurate geo-
locations of traffic signs from such noisy and sparse location
points constitutes a challenge. And 2) Complex Orientation
Characteristics in Real-World Scenarios. The orientation of
traffic signs can be subtle and is easily affected by real-world
placement conditions. Figure [2| illustrates two ‘Yield’ signs,
one with standard placement and the other poorly placed. The
improper placement makes it difficult to determine the correct
orientation. However, by considering the non-intersecting road
context, we can infer the backward orientation. Therefore, how
to correctly identify such subtle orientation characteristics,
while incorporating road context, poses another challenge.

To address these challenges, we devise AutoTS, an auto-
mated traffic sign update system designed for HD map updates,
which jointly performs geo-localization and orientation clas-
sification of traffic signs. As shown in Figure [3| we first fine-
tune a traffic sign detector to extract traffic signs from street
images. For traffic sign localization, we estimate the depth
between the camera and each detected traffic sign using an
advanced self-supervised monocular depth estimation model
By combining these depth estimates with the GPS locations of
the image sequence, we obtain a set of location points for each
traffic sign sequence. To derive the geo-location of the traffic
sign from these noisy and sparse location points, we propose
a noise and sparsity adaptive localization (NSAL) method.
NSAL filters out the noisy location points based on the affinity
matrix and tackles the sparsity among the remaining location
points by enhancing their spatial density, which is achieved
by assigning different weights to each location point. For
traffic sign orientation identification, we design a position-
aware orientation classification module, which constructs a
position-aware SIFT feature along with the ROI feature to
capture orientation characteristics of traffic signs from the
image sequence. This module also incorporates road context
information to assist in orientation classification. The main
contributions are summarized as follows:

« We propose AutoTS, an automated traffic sign update sys-
tem that jointly performs geo-localization and orientation

classification of traffic signs, seeking to address a key
challenge in HD map updates.

« We design a noise and sparsity adaptive localization method
to calculate the geo-location of each traffic sign, which can
filter noisy location points and is capable of deriving traffic
sign geo-locations from sparse location points.

o To determine whether a detected traffic sign belongs to
the road driven on, we propose a position-aware SIFT
feature combined with the ROI feature to extract orientation
characteristic from the traffic sign image sequence.

« We construct an open-source traffic sign localization and
orientation classification benchmark, KITTI-TS, to facilitate
the evaluation and comparison. Experiments conducted on
KITTI-TS demonstrate the effectiveness of our AutoTS
framework. The source code has been released to benefit
the research community

II. RELATED WORK

Traffic Sign Detection. Since traffic signs convey crucial
road information for driving assistance, many researchers in
computer vision have studied the task of traffic sign detec-
tion [12]. Traffic sign detection methods can primarily be
categorized into traditional [[13]]-[15]] and deep learning-based
methods [16]-[|18]. Traditional methods typically leverage the
physical characteristics of traffic signs, such as color and
shape, for recognition. For example, Le ef al. [13|] conducted
color detection and segmentation based on a Support Vector
Machine (SVM) to retrieve candidate regions of traffic signs in
videos. With the success of deep learning in computer vision,
several deep learning-based traffic sign detection and recog-
nition methods have been developed based on mainstream
object detection models (e.g., Faster R-CNN [19], YOLO [20],
and SSD [21]]). For example, Wang et al. [16] proposed an
improved feature pyramid model to boost traffic sign detection
by modifying the feature pyramid network in YOLO. In our
work, we fine-tune a pre-trained faster R-CNN to detect traffic
signs in the image, and use the detection results to estimate
the location and orientation of traffic signs.

Traffic Sign Localization. Accurate traffic sign localization is
significant to autonomous driving and HD mapping. Given that
GPS locations are usually available for the captured images,
the core challenge of traffic sign localization lies in estimating
the depth of the traffic sign relative to the camera. Early traffic
sign localization efforts mainly use LiDAR [22] and stereo
cameras [23]] to obtain the depth between the traffic sign and
the collection devices. For example, Doval et al. [23]] detected
traffic signs from RGB images and estimated their depth
through stereo vision. Although these methods yield accurate
results, the required sensors are expensive and impractical
for large-scale deployment. To reduce hardware costs and
improve scalability, some works focus on using monocular
camera images to handle traffic sign localization [7], [9],
[24]]-[26]. For instance, Musa et al. [9] utilized SfM-based
3D reconstruction to estimate the depth between the traffic
sign and the vehicle. Eisemann ef al. [27] proposed a NeRF-
based approach that reconstructs directional traffic signs from

Uhttps://github.com/hanxjing/AutoTS,
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Fig. 3. The framework of our AutoTS comprises three components: 1) traffic sign detector, 2) noise and sparsity adaptive localization, and 3) position-aware
orientation classification. We first detect multiple traffic sign sequences from an image sequence. For each detected traffic sign sequence, we extract the depth
of the traffic sign in the image using a depth estimation model and obtain a set of location points. We then design a noise and sparsity adaptive localization
method to derive the final traffic sign geo-location from these location points. We also extract ROI features and position-aware SIFT features to model the
orientation characteristic, and combine the image features to for orientation classification. Based on the location and orientation, we update the traffic sign to

HD maps.

monocular images, achieving accurate 3D localization and
geometry estimation suitable for HD map updates. However,
these approaches incur high computational costs. In addition,
Pedersen et al. [[7] adopted a thin-lens model [28]] together with
the real traffic sign height to calculate the depth between the
traffic sign and the vehicle. Despite its promising performance,
this method has limited application scenarios, since real traffic
sign heights always vary on different types of roads and are
not available for some regions. Yang ef al. [26] proposed a
vision-based pipeline that detects and localizes traffic signs
using YOLOv4 and a depth estimation model, demonstrating
accurate localization from a single image. In our work, we
adopt an advanced self-supervised monocular depth estimation
tool [29]] to obtain the depth and update traffic signs to maps
with not only the geo-location but also the orientation of traffic
signs to determine whether it belongs to the road driven on.
Note that although Pedersen er al. [[7] defined the direction
of a traffic sign as the azimuth angle of the road segment it
faces, their goal was to use this direction to improve traffic sign
localization, which differs from the orientation (i.e., functional
direction) considered in our work.

Graph-Based Clustering Methods. Clustering methods aim
to group similar instances into cohesive clusters. Mainstream
clustering methods include hierarchical methods [30], density-
based methods [31]], partitional methods [32f], model-based
methods [33]], and graph-based methods [34], [35]. Graph-
based clustering methods like spectral clustering [34] use an
affinity matrix to link all data points, effectively handling
density variations. Spectral clustering constructs a graph and
forms clusters through a graph-cut algorithm. The goal is to
have low-weight edges between different groups and high-
weight edges within groups [36]. When the cluster sizes
in spectral clustering are unconstrained, it may result in

unbalanced minimum cuts, which can be exploited to identify
the least relevant data points. Building on this, we develop
a noise and sparsity adaptive localization method for traffic
sign localization, using the minimum cut to filter noisy points
and assign different weights to location points to reinforce the
density relation among sparse location points. The final geo-
location of the traffic sign is then extracted from the refined
set of location points.

III. METHODOLOGY

In this section, we first formally define the research task,
and then detail our AutoTS approach shown in Figure [3]

A. Problem Formulation

In our work, we aim to address the problem of traffic sign
localization and orientation classification. Formally, suppose
we have a set of traffic signs S. For each traffic sign s € S,
we have an image sequence Z, = {Ii}f\/:sl, where N, is the
total number of the images. Each image sequence Z is paired
with a corresponding series of GPS locations G, = {g;}\,.
Besides, we annotate the ground truth geo-location I (i.e.,
latitude and longitude), orientation o; € O, and category c;
(e.g., “Yield” and “Speed Limit”) for each traffic sign s, where
O is the discrete orientation category set. Thus, our goal is to
learn a mapping function F defined as follows:

F (Isvgs) — (ls,Os,Cs). (D

We can estimate the geo-location, orientation and category of
traffic signs through J, enabling us to update the traffic sign
to HD maps.
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Algorithm 1 Noise and Sparsity Adaptive Localization
,pi}¥e,, threshold a

Input: Location points Ps = {p1, pa, -
QOutput: Geo-location I
1: Calculate the affinity matrix W by Gaussian kernel
2: for all P’ C P, do
3. if min Cut(P’,P”) < a then
Remove smaller P’ from P,
end if
end for
Get selected location point set P}
for all p; € P; do
Calculate D[i,i] = c . Wi;
10: end for
11: Obtaining the geo-location Iy = vaz“l Dli,ilp;

R A A

B. Traffic Sign Detection

We employ the pre-trained Faster R-CNN [19] to detect
traffic signs in the image. To adapt the detector to our task,
we fine-tune the Faster R-CNN on our constructed traffic sign
dataset. Each can be represented with the category, bounding
box b;, and ROI feature v;, which represent the visual content
enclosed by b;. These features are subsequently used for traffic
sign localization and orientation classification.

It is worth noting that a single image may contain multiple
traffic signs. When different traffic signs are detected within
an image sequence, we identify each individual traffic sign
based on the IoU (intersection over union) of bounding box b;
and the consistency of the traffic sign category in the image
sequence. We then process each detected traffic sign sequence
separately.

C. Image-level Location Point Extraction

Following previous work [7], we estimate the depth of the
detected traffic sign in each image and integrate the image’s
GPS location to derive the location point of the traffic sign.
In our work, considering the limited application scenarios of
the thin-lens model and the high computational cost of the
StM method adopted in existing works [7]], [9l, we extract
the depth by an advanced self-supervised monocular depth
estimation model PlaneDepth [29], which provides accurate
depth estimation.

For each image I, in the sequence Z,, we extract the depth
d; of the detected traffic sign by the self-supervised monocular
depth estimation model PlaneDepth [29]. In particular, we first
derive the depth map for the input image. We then extract
the depth of traffic sign from the center of its bounding box
b;. The extracted depth is the perpendicular distance between
the detected traffic sign and the vehicle that captured the
image. Based on the detected traffic sign depth d; and the
GPS location g; of the image I;, we derive the location point
p; of the detected traffic sign as follows,

0 = ﬂb;‘,
2
pi = Geo(0!,0¢,d;, g;),

R

2)

where 6! is the yaw angle (azimuth) of the traffic sign to
the camera, calculated by the camera horizontal FOV and the
center deviation b; of the bounding box. ¢ is the camera
yaw angle in the world coordinate system. Geo(-) is used to
calculate the location in the world coordinate system based on
the trigonometric function. Finally, we obtain a set of location
points P, for the image sequence Z;.

D. Noise and Sparsity Adaptive Localization

Based on the location point set P, we can derive the final

geo-location of the traffic sign. To mitigate the impact of
noisy location points caused by depth estimation errors, and
to address the sparsity of certain traffic sign samples caused
by limited FOVs and poor lighting conditions, we develop the
NSAL. Inspired by the classic spectral clustering [34]], which
employs an affinity matrix to establish relationships among the
data and hence can handle sparse data, we also construct an
affinity matrix to represent the location point set P, as a graph.
Different from the typical spectral clustering, which aims to
partition data into comparable clusters, our NSAL is designed
to discard noisy location points via a minimum cut and assign
adaptive weights to the remaining points to enhance the spatial
density relationships among the sparse samples.
Minimum Cut-based Noisy Point Removal. Following spec-
tral clustering, we first employ the Gaussian kernel to build
the affinity matrix for the location points of the detected traffic
sign sequence as follows,

_p.2
Wi = exp (L2220 )

where p; and p; € Ps. o is the smoothing hyperparameter of
the Gaussian kernel. The affinity matrix connects all location
points as a graph. As the minimum cut in spectral clustering
usually results in uneven clustering by finding the most
irrelevant points [36] (as shown in Figure E]), we use this
characteristic to remove the noisy points from Ps. The graph
cut in spectral clustering is defined as follows,

Cut(P',P")=

i€P’,jEP

Wij, “4)

where P’ and P” are two complementary subgraphs of Ps.
The value of Cut(-) is directly proportional to the correlation
between subgraphs. To identify the noisy location points, we
calculate the minimum cut, ie., the smallest Cut(-), among
all the location points. We consider the smaller subset from
the minimum cut to be the set of noisy location points.
Since the number of noisy location points is unknown, we
traverse all possible cuts and discard the smaller subsets where
Cut(-) < a, with « being a threshold hyperparameter. This
process results in the final selected location point set P;.

Weighted Geo-location Extraction. Based on the selected
location points P}, we then extract the final geo-location of
the traffic sign. Since the location points can be sparse in
some cases, directly computing their geometric center may
lead to unreliable results. To address this, we enhance the
contribution of location points that are more closely connected
to their neighbors, as they are generally more reliable in sparse
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Fig. 4. As the camera approaches the traffic signs, the effective projection
area of the leftward traffic sign changes, whereas that of the backward traffic
sign remains fixed.

scenarios. Specifically, we assign different weights to each
location point based on the affinity matrix, which reinforces
the spatial density relationships among the sparse points. We
first compute the degree matrix of the location points as
follows:

N¢
Dli,i] =Y Wiy, )
j=1

where N is the total number of the selected location points.
The degree matrix reflects the connection of each point to
other points. We deem that compared to points with smaller
degree values, a point with a larger degree value should have
more surrounding points when the data is dense. Therefore,
we weight the points with their degrees and derive the final
traffic sign geo-location l~s, which is defined as follows,

Ne
I =Y _ Dli,ilp;, (6)
i=1

where D; is value of the normalized degree matrix and
[|1D;]| = 1. The overall workflow of our noise and sparsity
adaptive localization method is shown in Algorithm 1.

E. Position-Aware Orientation Classification

To identify the orientation of a traffic sign, we explore its
orientation characteristics in the image sequence and utilize
the ROI feature as well as the designed position-aware SIFT
feature to represent these characteristics. As the orientation of
a traffic sign can be affected by the road context (e.g., if the
road driven on is intersecting), we also incorporate the road
context to ensure a comprehensive orientation classification.
Orientation Characteristic Exploration. We observe that
the orientation characteristics of traffic signs with different
orientations can be effectively captured from the detected
traffic sign sequence. As shown in Figure ] when the vehicle
(i.e., camera) approaches a traffic sign, the effective projected
area of the leftward or rightward traffic sign changes signif-
icantly, while that of the backward traffic sign is fixed. As
illustrated in Figure [3] (a), changes in the projected area lead

Backward g
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(a) Shape change in leftward traffic sign sequence is more obvious than that of
backward traffic sign sequence.
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(b) 2D positions diversify same descriptors of leftward traffic sign.

Fig. 5. Shape changes and position-aware SIFT keypoints in detected traffic
sign sequences.

to shape changes in leftward and rightward traffic signs across
the image sequence. In particular, the shape changes of the
leftward traffic signs are obvious and become more apparent
after resizing the detected signs to a uniform height while
maintaining a fixed aspect ratio. Therefore, we treat the shape
change in the traffic sign sequence as a key orientation cue.
This characteristic can be represented by the ROI feature v;
extracted by the traffic sign detector.

Position-Aware SIFT Feature. In addition to the ROI feature,
we also use SIFT keypoints [37] to reinforce the orientation
characteristic. As shown in Figure[3](a), we highlight the same
keypoints with red dots in the detected traffic sign sequence.
The same keypoints in the detected backward traffic signs
have similar 2D positions in the detected area, while those in
the detected leftward traffic signs have different 2D positions
in the detected area. This positional variation serves as a
valuable cue for distinguishing orientations. To exploit this
characteristic, we first resize each detected traffic sign to a
fixed height while maintaining its aspect ratio. We then extract
a SIFT keypoint set K; = {des1,desa, -+ ,desy,} from the
resized traffic sign, where desy, is the descriptor of each
keypoint. We concatenate each descriptor with its 2D position
(z,y) in the detected area to obtain a set of position-aware
SIFT keypoints K; as follows,

K; = {des|[des; z;y]}, (7)

where des denotes the position-aware SIFT keypoint. In left-
ward/rightward traffic sign sequences, the same keypoints may
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have differing 2D positions. As shown in Figure [5] (b), to rep-
resent this characteristic, we aggregate all position-aware SIFT
keypoints across the sequence and remove redundant ones (i.e.,
same keypoints with same 2D positions) by conducting the
Bag of Word (BoW) [38]] method as follows,

5:BOW(I€15’€27"'7]€i)7i:17"'7N87 (8)

where £ = {des;}"* is a unique set of total position-aware
SIFT keypoints of a detected traffic sign sequence and Ny, is
the number of unique position-aware SIFT keypoints. Based
on &£, we represent each detected traffic sign in the sequence
with a binary position-aware SIFT feature e; € RN+ as
follows,

el:f€(57]€i)7i:17"'7N6‘3 (9)

where f.(-) finds the most similar keypoint in & for each
keypoint in K;. e; indicates the presence of each keypoint
in £ in K;. Since the 2D position helps diversify keypoints
in leftward/rightward cases, the backward traffic sign can be
classified based on the similarity of e; among the traffic sign
sequence.

Comprehensive Orientation Classification. Due to the ca-
pability of the self-attention mechanism of Transformer [39]
models in capturing the context information in a sequence, we
adopt a Transformer as our encoder to model the orientation
characteristics among the sequence with both the ROI feature
v; and position-aware SIFT feature e;. To take the road
semantics into account, we also employ the mean image
feature as part of the orientation classification, which is defined
as follows,

hs = Transf(v;; e;),

05 = fo(hs;ws)v

where Transf(-) denotes the Transformer encoder and hy is
the output orientation hidden vector. x, is the mean image
feature obtained by the mean of all the image features in the
sequence. f,(-) is the orientation decoder, which consists of a
fully connected layer. o, is the predicted orientation.

We optimize the orientation classification with a cross-
entropy loss function as follows,

(10)

|S] e
exp(os) _xp(0)

Zw% o8(SS (o)

where 0} the predicted logit corresponding to the ground-truth
orientation of traffic sign s. w,, is the weight assigned to the
ground-truth orientation class of traffic sign s, which is set
inversely proportional to the class frequency to mitigate the
impact of class imbalance.

(1)

wce

IV. KITTI-TS DATASET

To facilitate the evaluation and comparison of the proposed
method, we construct the KITTI-TS benchmark based on the
widely used KITTI dataset [40]], which serves as a standard
benchmark for depth estimation [41]-[43]] and monocular 3D
object detection [44], [45]. The KITTI dataset includes a
variety of urban scenarios that reflect real-world complexities
in autonomous driving, including data captured from various

KITTI-TS
Category
&
Quantity
ﬂ === Q 9 @ . 9
Orientation v
& ~
Quantity Leftward Backward Rightward
32 223 35

Fig. 6. The traffic sign categories, orientations and their quantities in the
KITTI-TS dataset.

TABLE I
PERFORMANCE OF TRAFFIC SIGN DETECTOR IN TERMS OF COCO
METRICS (%) ON THE KITTI-TS DATASET.

Method AP
60.08

AP50
84.27

AP75
72.78

APs
51.91

APm
67.61

Traffic sign detector

road types with a wide range of traffic signs. Furthermore,
the collection vehicle of the KITTI dataset is equipped with
a camera, GNNS, and a laser scanner, providing the neces-
sary multi-modal information to support the development and
validation of traffic sign localization methods.

To construct the KITTI-TS benchmark, we first annotate
traffic signs within the raw KITTI dataset. Traffic sign cat-
egories containing fewer than five instances are discarded to
ensure sufficient representation. Next, we extract the depth of
each traffic sign using the LiDAR point cloud data provided by
the laser scanner onboard the KITTI data collection vehicle.
By combining this depth information with the camera’s orien-
tation and GPS data, we compute the ground-truth geo-location
of each traffic sign. Following this, we annotate the orientation
of each traffic sign. In the real world, traffic signs may face
arbitrary directions. However, as we aim to determine whether
the traffic sign belongs to the road driven on, we simplify
the orientation by categorizing it into discrete values (i.e.,
leftward, backward, rightward). We define backward traffic
signs as belonging to the road driven on.

Finally, we obtain 290 individual traffic signs from 16
different categories, with 3,062 bounding boxes and location
points among 2,387 images. The detailed traffic sign cate-
gories, orientations, and their quantities are shown in Figure[6]

V. EXPERIMENT
A. Experiment Settings

Datasets. We present experimental results on the KITTI-TS
dataset, which we partition into a training set (80%) and a
testing set (20%). To further evaluate the effectiveness of
our noise- and sparsity-adaptive localization (NSAL) method
in the traffic sign localization task, we conduct additional
experiments on the Aalborg dataset [7], [8], which contains
277 individual traffic signs and 7,828 associated location
points. As the Aalborg dataset [7] is designed to evaluate
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clustering-based localization approaches, it provides only the
estimated location points and the ground-truth geo-location
of each traffic sign, without the corresponding image-level
detections. Therefore, we use only the location points in this
dataset to validate our NSAL method. Additionally, Aalborg
dataset includes the direction from each traffic sign to the road
segment (i.e., location of image-collecting vehicle), which can
be leveraged to improve the localization task. We follow the
same dataset settings as used in prior work [7].

Evaluation Metrics. For the traffic sign localization, following
previous work [7], we adopt the MAE (mean absolute error)
and RMSE (Root mean squared error) to evaluate the localiza-
tion results. Besides, we also utilize the Recall@ K (R@K) to
evaluate the proportion of traffic signs with localization error
of less than K meters, where K = {1,2}. For orientation
classification, we adopt two evaluation metrics: 1) Accuracy,
which measures the proportion of correctly classified traffic
signs among all samples, and 2) mean Recall (mRecall), which
computes the average recall across all orientation classes. Due
to the imbalanced distribution of orientation labels, the model
tends to be biased toward backward orientations. Therefore,
mRecall is used to more comprehensively assess both the
class-wise balance and overall effectiveness of the orientation
classification. We also list the recall of each orientation class
to gain more detailed classification performance.
Implementation Details. In the traffic sign detector, we adopt
a Faster R-CNN [19] with ResNeXt-101-FPN pre-trained on
the COCO dataset [46]]. We fine-tune the Faster R-CNN on
our KITTI-TS dataset with batch size 12 and 50K iterations to
obtain the traffic sign detector. The detection results in terms of
the COCO evaluation metrics are shown in Table[ll The COCO
evaluation metrics are provided in Detectron2 [47] to evaluate
the detector, including Average Precision (AP), Average Pre-
cision at different IoU thresholds (AP50 and AP75), Average
Precision for small objects (APs) and Average Precision for
median objects (APm). Average Precision (AP) is calculated
as the area under the precision-recall curve, averaged over loU
thresholds from 0.50 to 0.95 (with a step of 0.05), reflecting the
trade-off between precision and recall. Note that the ground-
truth bounding boxes are manually annotated and may contain
slight inaccuracies, which can limit the maximum achievable
AP. Note that as one image may contain multiple traffic signs,
in the inference phase, we consider that bounding boxes with
same categories and IoU less than 0.2 in adjacent images
belong to the same traffic sign.

In the noise and sparsity adaptive localization, we utilize
the provided checkpoint of PlaneDepth [29] to estimate the
depth between the camera and the traffic sign, which achieves
promising estimation results on KITTI without depth supervi-
sion. The smoothing hyperparameter o in NSAL is set to 2.5.
The threshold o in NSAL is set to 0.1.

In the position-aware orientation classification, due to the
unbalanced orientation data distribution, where the backward
traffic signs account for 77.4% of all samples, the predicted
orientation biases to the backward category. We hence adopt
the weighted cross-entropy loss to balance the biased predic-
tion. The weight of each category is assigned according to the
inverse class frequency. We employ the Adam optimizer, and

TABLE 11
PERFORMANCE COMPARISON OF TRAFFIC SIGN LOCALIZATION
REGARDING MAE (M), RMSE (M), R@1M (%) AND R@2M(%) ON THE
KITTI-TS AND AALBORG DATASETS. THE BEST RESULTS IN EACH
DATASET ARE HIGHLIGHTED IN BOLD.

Methods | MAE| | RMSE| | R@Im 1 [ R@3m 1

KITTI-TS Dataset

GeoLocating [7]] 3.98 6.27 11.86 22.03
GeoLocating+NSAL 3.80 5.92 15.25 27.12
AutoTS (ours) 2.38 3.42 30.51 54.23
Aalborg Dataset
GeoLocating [7]] 5.88 7.07 3.57 8.93
GeoLocating+NSAL 5.34 6.49 5.36 10.71
GeoLocating-D [7] 5.12 5.92 7.14 12.50
GeoLocating-D+NSAL 4.90 5.65 10.71 16.07

each training lasts for 300 steps. We set the batch size and
initial learning rate to 8 and 0.0008, respectively.

B. Comparison on Localization

In this section, we first compare our AutoTS method with

the existing traffic sign localization method [7] to evaluate
the ability of geo-locating traffic signs. We then conduct an
ablation study of our NSAL to evaluate the effectiveness of
its different components. Note that the experimental results in
localization are derived from all the samples, rather than just
the testing set.
Comparison with Existing Works. Given that GeoLocat-
ing [[7] shares a similar application scenario with our method
and provides publicly available code and dataset, we adopt it
as the baseline for comparison on the KITTI-TS and Aalborg
datasets. GeoLocating employs the thin-lens model [2§] to
estimate the depth from the camera to each traffic sign,
generating a set of location points. It then clusters these points
for each traffic sign category using the DBSCAN algorithm
and iteratively searches for optimal hyperparameters. For a
fair comparison, we implement GeoLocating on the KITTI-TS
dataset and search for the optimal hyperparameters to obtain
geolocations of traffic signs.

Since the Aalborg dataset provides only estimated lo-
cation points, we only apply our NSAL method to these
points to evaluate its effectiveness. Specifically, based on
the GeoLocating-derived clusters of these location points,
we further apply our NSAL method to generate more ac-
curate geolocations from the location points. This pipeline
is denoted as GeoLocating+NSAL, combining GeoLocating’s
depth estimation with our NSAL refinement. Moreover, since
the Aalborg dataset also includes annotated direction of each
location point to the image-collecting vehicle, we further
incorporate the direction information to refine the geolocation
of traffic signs. This variant is denoted as GeoLocating-D.

The results are presented in Table [} based on traffic signs
detected by our traffic sign detector. We can observe that: 1)
On the KITTI-TS dataset, our AutoTS clearly outperforms
GeoLocating, demonstrating the superiority of our method
in geo-locating traffic signs. 2) On the KITTI-TS dataset,
our AutoTS has better performance than GeoLocating+NSAL,
highlighting the effectiveness of our selected self-supervised
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TABLE III
ABLATION STUDY OF TRAFFIC SIGN LOCALIZATION REGARDING MAE
(M), RMSE (M), R@ 1M (%) AND R@2M(%) ON THE KITTI-TS
DATASET. THE * SIGN REPRESENTS THAT THE EXPERIMENTS CONDUCT
WITH SPARSE DATA. THE BEST RESULTS IN ALL THE DATA ARE
HIGHLIGHTED IN BOLD.

Methods MAE| | RMSE| | Recall-lmt | Recall-2m?
AutoTS w/o MinCut 2.51 3.74 27.11 50.87
AutoTS w/o Weight 2.49 3.72 28.81 49.15
AutoTS-K-Means 2.56 3.82 27.11 47.46
AutoTS-DBSCAN 2.48 3.79 28.81 52.54
AutoTS (ours) 2.38 3.42 30.51 54.23
AutoTS-K-Means* 2.46 3.52 28.81 52.54
AutoTS-DBSCAN* 242 3.48 30.51 52.54
AutoTS* 2.36 3.37 32.20 54.23

monocular depth estimation model over the thin-lens model for
depth extraction in this task. The high-quality location points
further enhance traffic sign localization performance. 3) On
both the KITTI-TS and Aalborg datasets, GeoLocating+NSAL
achieves better performance than GeoLocating. This demon-
strate our NSAL method can assist in geo-locating traffic signs.
Although the improvement brought by NSAL is relatively
modest, it is specifically designed to handle challenges such
as noise and sparsity. The performance of NSAL may also be
limited by the quality of the location points. And 4) With the
inclusion of direction information, both GeoLocating-D and
GeoLocating-D+NSAL outperform GeoLocating and GeoLo-
cating+NSAL, respectively, demonstrating the effectiveness of
direction information in the Aalborg dataset.

Ablation Study of NSAL Method. To thoroughly investigate
our NSAL, we introduce the following baseline methods:

o AutoTS w/o MinCut: We disable the minimum cut from our
NSAL to analyze its effect.

o AutoTS w/o Weight: To investigate the impact of the
weighted cluster center extracting, we replace it with the
K-Means clustering method to derive the final geo-location
of traffic signs.

o AutoTS-K-Means: We use the intrinsic cluster center calcu-
lation method to derive the geo-location from the location
points to verify the effectiveness of our NSAL method.

o AutoTS-DBSCAN: To compare our NSAL with DBSCAN,
a clustering method capable of handling noise points, we
directly utilize the DBSCAN clustering method to derive
the geo-location.

We further conducted experiments on samples with sparse
location points to validate our method’s ability to handle sparse
data. Specifically, we regard traffic signs with fewer than 10
location points as sparse samples. The results are shown in
Table from which we observe that: 1) Our AutoTS out-
performs both AutoTS w/o MinCut and AutoTS w/o Weight,
indicating the effectiveness of these two components in our
NSAL. The minimum cut helps eliminate noisy or inconsistent
location points by preserving the most spatially coherent
cluster. The weighted clustering further refines the estimated
location by emphasizing high-confidence points, leading to
more robust localization results. 2) Our AutoTS outperforms
both AutoTS-K-Means and AutoTS-DBSCAN, demonstrating

TABLE IV
ABLATION STUDY OF POSITION-AWARE ORIENTATION CLASSIFICATION IN
TERMS OF ACCURACY (%) AND MRECALL (%) ON THE KITTI-TS
DATASET. T DENOTES THE RESULT WITH THE GROUND TRUTH TRAFFIC
SIGN BOUNDING BOXES. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Methods Accuracy Recall of Each Category mRecall
Left Back Right
AutoTS w/ ROI 71.43 12.50 | 91.30 | 22.22 42.01
AutoTS w/ ROIS 73.02 37.50 | 84.78 | 44.44 55.57
AutoTS w/o SIFT 76.19 37.50 | 89.13 | 44.44 62.38
AutoTS w/o MImg 80.95 50.00 | 89.13 | 66.67 68.60
AutoTS w/ BiLSTMs 82.54 62.50 | 91.30 | 55.56 69.79
AutoTS w/ LSTMs 82.54 50.00 | 93.48 | 55.56 67.07
AutoTS (ours) 85.71 50.00 | 95.65 | 66.67 70.77
AutoTST 88.89 75.00 | 95.65 | 66.67 79.11

the advantage of our NSAL in handling noisy and sparse
location points compared to K-Means and DBSCAN. Finally,
3) when dealing with sparse data, our AutoTS* performs
better than both AutoTS-K-Means* and AutoTS-DBSCAN*.
This shows the improved sparse data processing ability of our
NSAL.

C. Comparison on Orientation Classification

Since there are no existing efforts focusing on the task of
traffic sign orientation classification, we explore the effective-
ness of different features in our position-aware orientation
classification framework and investigate the performance of
different networks in capturing orientation characteristics. To
this end, we introduce the following baseline methods:

o AutoTS w/ ROI: To examine the effect of the image se-
quence in orientation classification, we solely utilize the ROI
feature of a single traffic sign for orientation classification.

o AutoTS w/ ROIS: To compare with AutoTS w/ ROI, we
employ the ROI feature of the detected traffic sign sequence
to classify its orientation.

o AutoTS w/o SIFT: To verify the effect of the position-aware
SIFT feature, we remove it from the input of orientation
classification.

o AutoTS w/o MImg: To investigate the effect of the mean
image feature, we remove it from our AutoTS to classify
the orientation.

e AutoTS w/ BiLSTMs and AutoTS w/ LSTMs: Given that
both BiLSTMs [48]] and LSTMSs [49]] are advanced sequence
information processing methods, we substitute the Trans-
former encoder in our AutoTS with BiLSTMs [48]] and Au-
toTS w/ LSTMs [49] to model the orientation characteristic.

The results are shown in Table The results of AutoTS
are based on traffic signs detected by our traffic sign detector.
We find that: 1) AutoTS w/ ROIS achieves a better accuracy
and mRecall results than AutoTS w/ ROI, demonstrating
the necessity of incorporating image sequences for effective
orientation classification. Furthermore, AutoTS w/ ROI, which
relies on a single traffic sign, performs relatively poorly on the
leftward and rightward categories due to its limited capacity
to capture orientation-specific features. In contrast, AutoTS w/
ROIS, which leverages a sequence of detected traffic signs,
is better able to extract orientation cues, resulting in more
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Fig. 7. Position-aware SIFT features of traffic sign with different orientations.

balanced and accurate classification across all three orientation
categories. 2) AutoTS outperforms AutoTS w/o SIFT in both
Recall and mRecall, highlighting the effectiveness of the
position-aware SIFT feature in capturing orientation-relevant
information. To gain deeper insight, we visualize the position-
aware SIFT features from the test set in Fig. [7] The vertical
stripes in backward traffic sign sequence are more obvious than
those in rightward traffic sign sequence, indicating a stronger
similarity among the backward traffic sign sequence. This is
instrumental in distinguishing the orientation in traffic sign
sequences. 3) AutoTS achieves superior Recall and mRecall
over AutoTS w/o MImg, suggesting that road semantics can
facilitate traffic sign orientation classification. 4) AutoTS with
the Transformer orientation encoder has better performance
over AutoTS w/ BiLSTMs and AutoTS w/ LSTMs in terms
of Recall and mRecall. This underscores the Transformer’s
superior capability in capturing and modeling sequence infor-
mation. And 5) AutoTS7 outperforms AutoTS, demonstrating
that errors in the traffic sign detector have a slight impact on
the downstream orientation classification task.

Orientation classification is crucial for HD map updates and
other downstream geo-related tasks. Existing HD map traffic
sign update methods primarily rely on object detection
and localization. Assuming our KITTI-TS dataset is used in
a map update scenario, our traffic sign detector identifies 63
distinct traffic signs in the test set, among which 46 are of
backward orientation (i.e., belong to the road driven on). If
all detected traffic signs were naively added to the map with-
out considering their orientations, the theoretical map update
accuracy would be 73.01%. However, with the orientation
classification module, certain leftward and rightward traffic
signs can be correctly filtered out, increasing the theoretical
map update accuracy to 89.58%, as calculated based on the
results of AutoTSt in Table This result highlights the ef-
fectiveness and necessity of accurate orientation classification
in real-world HD mapping systems.

D. Qualitative Results

We visualize the qualitative results of AutoTS w/o MinCut,
AutoTS w/o Weight, and AutoTS (ours) on selected examples
in Figure [8] The observations are as follows: 1) AutoTS
outperforms AutoTS w/o MinCut, as the incorporation of the
minimum cut effectively suppresses the influence of noisy
location points, leading to improved localization accuracy.
However, in the second example, both AutoTS and AutoTS
w/o MinCut yield similar localization results. One possible
reason is that the lower vegetation coverage in this scenario
likely leads to more stable GPS signals, thus even without the
minimum cut, AutoTS w/o MinCut still achieves satisfactory
localization results. These examples highlight the benefit of
the minimum cut in scenarios with degraded GPS quality.
2) In the third example, AutoTS demonstrates superior lo-
calization performance compared to AutoTS w/o Weight. Due
to the sparse distribution of traffic sign location points, the
weighted clustering method in AutoTS reinforces the spatial
density relationships, leading to more accurate localization. In
contrast, the fourth example features a denser set of location
points, resulting in comparable performance between AutoTS
and AutoTS w/o Weight. Finally, 3) regarding orientation
classification, our AutoTS correctly classifies the orientation
in the first three examples, but fails in the last one. Although
the last traffic sign is backward, it is placed along a road
corner with an ambiguous orientation, making it challenging
for AutoTS to infer the correct orientation. This suggests that
our position-aware orientation classification method may face
limitations in scenarios where traffic signs are not optimally
positioned and road context cannot offer valuable information.

VI. CONCLUSION

In this work, we present AutoTS, an end-to-end automated
traffic sign update system, capable of estimating the geo-
location and classifying the orientation of traffic signs from the
image sequence. To localize a traffic sign, we integrate a self-
supervised monocular depth estimation model to estimate the
depth of detected traffic signs and design the NSAL method to
infer geo-locations from multiple location points. To determine
whether a detected sign belongs to the current driving road, we
introduce a position-aware orientation classification approach.
This method not only captures orientation characteristic across
the image sequence but also incorporates road context to
enhance orientation classification accuracy. Moreover, we con-
struct KITTI-TS dataset, an open-source benchmark for traffic
sign localization and orientation classification, to facilitate
the evaluation of the proposed AutoTS framework. Extensive
experimental results validate the effectiveness of our approach.
As future work, we plan to extend the system to include
additional types of road information, moving toward a more
comprehensive and fully automated HD map update pipeline.
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